MOOSE

An open-source framework to enable rapid development of collaborative, multi-scale, multi-physics simulation tools

Andrew E. Slaughter

Team Members: Derek Gaston, Cody Permann, David Andrš, John Peterson, Jason Miller

MOOSE Overview

MOOSE Team

- Derek Gaston
 - derek.gaston@inl.gov
 - @friedmud
- Cody Permann
 - cody.permann@inl.gov
 - @permcody
- David Andrš
 - david.andrs@inl.gov
 - @andrsdave

- John Peterson
 - <u>iw.peterson@inl.gov</u>
 - o <a>@peterson512
- Jason Miller
 - o jason.miller@inl.gov
 - o @mimiller96
- Andrew Slaughter
 - andrew.slaughter@inl.gov
 - @aeslaughter98

MOOSE: Multiphysics Object Oriented Simulation Environment

- A framework for solving computational engineering problems in a well-planned, managed, and coordinated way
 - Leveraged across multiple programs
- Designed to significantly reduce the expense and time required to develop new applications
- Designed to develop analysis tools
 - Uses robust solution methods
 - Designed to be easily extended and maintained
 - Efficient on both a few and many processors

tional Laboratory

Capabilities

- 1D, 2D and 3D
 - User code agnostic of dimension
- Finite Element Based
 - Continuous and Discontinuous Galerkin (and Petrov Galerkin)
- Fully Coupled, Fully Implicit
- Unstructured Mesh
 - All shapes (Quads, Tris, Hexes, Tets, Pyramids, Wedges, ...)
 - Higher order geometry (curvilinear, etc.)
 - Reads and writes multiple formats
- Mesh Adaptivity
- Parallel
 - User code agnostic of parallelism
- High Order
 - User code agnostic of shape functions
 - p-Adaptivity
- Built-in Postprocessing
- And much more ...

Code Platform

- MOOSE is a simulation framework allowing rapid development of new simulations tools.
- Specifically designed to simplify development of multiphysics applications.
- Provides an object-oriented, pluggable system for defining all aspects of a simulation tool.
- Leverages multiple DOE developed scientific computational tools
- Allows scientists and engineers to develop state of the art simulation capabilities.
- Maximized Science/\$
- Currently ~64,000 lines of code.

Solves Problems that Challenges Others

Strong Coupling: better agreement between MOOSE and reference **Weak Coupling:** excellent agreement between MOOSE and operator-split

Profile of A concentration at 4480 sec.

Profile of C concentration at 4480 sec.

Rapid Development

Application	Physics	Results	Lines
BISON	Thermo-mechanics, Chemical, diffusion, coupled mesoscale	4 mo.	3,000
PRONGHORN	Neutronics, Porous flow, eigenvalue MARMOT 4th order phasefield mesoscale	3 mo.	7,000
MARMOT	4-th order phase-field meso-scale	1 mo.	6,000
RAT	Porous ReActive Transport	1 mo.	1,500
FALCON	Geo-mechanics, coupled mesoscale	3 mo.	3,000
MAMBA	Chemical reactions, prescipitation, and porous flow	5 wks.	2,500
HYRAX	Phase-field, ZrH precipitation	3 mo.	1,000
PIKA	Multi-scale heat and mass transfer with phase-change	3 mo.	2,900

MOOSE Application Architecture

MOOSE Code Example

Strong Form $\rho C p \frac{\partial T}{\partial t} - \nabla \cdot k(T, B) \nabla T = f$

$$\int\limits_{\Omega} \rho C p \frac{\partial T}{\partial t} \psi_i + \int\limits_{\Omega} k \nabla T \cdot \nabla \psi_i - \int\limits_{\partial \Omega} k \nabla T \cdot \mathbf{n} \psi_i - \int\limits_{\Omega} f \psi_i = \mathbf{0}$$
 Kernel BoundaryCondition Kernel

Actual Code

return _k[_qp]*_grad_u[_qp]*_grad_test[_i][_qp];

MOOSE Software Quality Practices

- MOOSE currently meets all NQA-1 (Nuclear Quality Assurance Level 1) requirements
- All commits to MOOSE undergo review using GitHub Pull Requests and must pass a set of application regression tests before they are available to our users.
- All changes must be accompanied by issue numbers and assessed an appropriate risk level.
- We maintain a regression test code coverage level of 80% or better at all times.
- We follow strict code style and formatting guidelines (wiki/CodeStandards).
- We monitor code comments with third party tools for better readability.

Modules

Modules Overview

MOOSE includes a set of community developed physics modules that you can build on to create your own application.

- Phase Field
- Tensor Mechanics
- Heat Conduction
- Multiphase flow through porous media (Richards Eq.)
- Chemical Reactions

Modules Overview (cont.)

- The purpose of the modules is to encapsulate common kernels, boundary conditions, etc. to prevent code duplication.
- Examples include: heat conduction, solid mechanics, Navier-Stokes, and others.
- *No* export controlled physics (e.g., neutronics) should be put into the modules.
- The modules are organized so that your application can link against only those which it requires.

Modules: Solid Mechanics Example

- Available in:
 - moose/modules/solid mechanics
- Stats:
 - 127,650 elements, 25,227 nodes
- Features:
 - Large displacements
 - Plasticity and Creep

Displacement Magnitude

Displacement

Von Misses Stress

Modules: Flow Example

- Available in: <u>moose/modules/navier_stokes</u>
- Subsonic Test Case:
 - Mach 0.5 over a circular arc
 - Euler equations
 - 8,232 elements, 9,675 nodes

Velocity Streamlines

MultiApps

MultiApps Overview

- MOOSE was originally created to solve fully-coupled systems of PDEs.
- Not all systems need to be / are fully coupled:
 - Multiscale systems are generally loosely coupled between scales.
 - Systems with both fast and slow physics can be decoupled in time.
 - Simulations involving input from external codes might be solved somewhat decoupled.
- To MOOSE these situations look like loosely-coupled systems of fully-coupled equations.
- A MultiApp allows you to simultaneously solve for individual physics systems.

MultiApps Overview (cont.)

- Each "App" is considered to be a solve that is independent.
- There is always a "master" App that is doing the "main" solve.
- A "master" App can then have any number of MultiApps.
- Each MultiApp can represent many (hence Multi!) "sub-apps".
- The sub-apps can be solving for completely different physics from the main application.
- They can be other MOOSE applications, or might represent external applications.
- A sub-app can, itself, have MultiApps... leading to multi-level solves.

MultiApp Demonstration

- BISON Fuels Performance Application
 - Solves the fully-coupled thermomechanics and species diffusion equations in 2D or 3D
 - Couples to lower length scale material models
 - o All fuels capability, LWR, MOX, metal, TRISO, etc.
- RELAP-7 Reactor Systems Analysis
 - Next generation reactor systems analysis application
 - Advanced numerical integration schemes
 - Advanced flow and core physics models
- RattleSNake Multiscale Neutronics Application
 - o SAAF: Self-Adjoint Angular Flux formulation
 - SN and PN in flying direction; multi-group in energy; method of lines in time
 - Includes Low-order multi-group diffusion

MOOSE Examples

MOOSE Examples

- Currently, 92 forks of Stork
- Over a dozen applications under heavy development at INL
- Geomechanics projects include:
 - FALCON
 - BADGER
 - RAT
 - RedBack
 - Richards MOOSE module

www.mooseframework.org